Polynomial space hardness without disjunction property
نویسندگان
چکیده
In [HT11], Horč́ık and Terui show that if a substructural logic enjoys the disjunction property, then its tautology problem is PSPACE-hard. We prove that all substructural logics in the interval between intuitionistic logic and generalized Hájek basic logic have a PSPACE-hard tautology problem, which implies that uncountably many substructural logics lacking the disjunction property have a PSPACE-hard tautology problem.
منابع مشابه
Property-based Polynomial Invariant Generation Using Sums-of-Squares Optimization
While abstract interpretation is not theoretically restricted to specific kinds of properties, it is, in practice, mainly developed to compute linear over-approximations of reachable sets, aka. the collecting semantics of the program. The verification of user-provided properties is not easily compatible with the usual forward fixpoint computation using numerical abstract domains. We propose her...
متن کاملA polynomial time complete disjunction property in intuitionistic propositional logic
We extend the polynomial time algorithms due to Buss and Mints[2] and Ferrari, Fiorentini and Fiorino[4] to yield a polynomial time complete disjunction property in intuitionistic propositional logic. The disjunction property, DP of the intuitionistic propositional logic Ip says that if a disjunction α0 ∨ α1 is derivable intuitionistically, then so is αi for an i. This property follows from cut...
متن کاملThe Complexity of the Disjunction and ExistentialProperties in
This paper considers the computational complexity of the disjunc-tion and existential properties of intuitionistic logic. We prove that the disjunction property holds feasibly for intuitionistic propositional logic; i.e., from a proof of A _ B, a proof either of A or of B can be found in polynomial time. For intuitionistic predicate logic, we prove superexponential lower bounds for the disjunct...
متن کاملRice-Style Theorems for Complexity Theory
Rice’s Theorem states that all nontrivial language properties of recursively enumerable sets are undecidable. Borchert and Stephan [BS00] started the search for complexity-theoretic analogs of Rice’s Theorem, and proved that every nontrivial counting property of boolean circuits is UP-hard. Hemaspaandra and Rothe [HR00] improved the UP-hardness lower bound to UPO(1)-hardness. The present paper ...
متن کاملFinding Low Degree Annihilators for a Boolean Function Using Polynomial Algorithms
Low degree annihilators for Boolean functions are of great interest in cryptology because of algebraic attacks on LFSR-based stream ciphers. Several polynomial algorithms for construction of low degree annihilators are introduced in this paper. The existence of such algorithms is studied for the following forms of the function representation: algebraic normal form (ANF), disjunctive normal form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 467 شماره
صفحات -
تاریخ انتشار 2013